Search Publications
Export 95 results:
Author [ Title(Asc)] Year
Filters: Keyword is Protein Binding  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Howard TR, Song B, Cristea IM. Workflows and considerations for investigating protein interactions of viral DNA sensors. Methods Enzymol. 2019 ;625:309-338.
Kobren SNadimpalli, Singh M. Systematic domain-based aggregation of protein structures highlights DNA-, RNA- and other ligand-binding positions. Nucleic Acids Res. 2019 ;47(2):582-593.
Lee J, Sutterlin HA, Wzorek JS, Mandler MD, Hagan CL, Grabowicz M, et al. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc Natl Acad Sci U S A. 2018 ;115(10):2359-2364.
Davis KM, Schramma KR, Hansen WA, Bacik JP, Khare SD, Seyedsayamdost MR, et al. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition. Proc Natl Acad Sci U S A. 2017 ;114(39):10420-10425.
Gong X, Li J, Shao W, Wu J, Qian H, Ren R, et al. Structure of the WD40 domain of SCAP from fission yeast reveals the molecular basis for SREBP recognition. Cell Res. 2015 ;25(4):401-11.
Donovan J, Whitney G, Rath S, Korennykh A. Structural mechanism of sensing long dsRNA via a noncatalytic domain in human oligoadenylate synthetase 3. Proc Natl Acad Sci U S A. 2015 ;112(13):3949-54.
Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol. 2009 ;16(12):1230-6.
Cosgrove MS, Bever K, Avalos JL, Muhammad S, Zhang X, Wolberger C. The structural basis of sirtuin substrate affinity. Biochemistry. 2006 ;45(24):7511-21.
Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, et al. Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature. 2013 ;504(7478):168-71.
Suckling RJ, Poon PPhi, Travis SM, Majoul IV, Hughson FM, Evans PR, et al. Structural basis for the binding of tryptophan-based motifs by δ-COP. Proc Natl Acad Sci U S A. 2015 ;112(46):14242-7.
Donovan J, Dufner M, Korennykh A. Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proc Natl Acad Sci U S A. 2013 ;110(5):1652-7.
Alfaro-Aco R, Thawani A, Petry S. Structural analysis of the role of TPX2 in branching microtubule nucleation. J Cell Biol. 2017 ;216(4):983-997.
P Garcia D, Leach RW, Wadsworth GM, Choudhary K, Li H, Aviran S, et al. Stability and nuclear localization of yeast telomerase depend on protein components of RNase P/MRP. Nat Commun. 2020 ;11(1):2173.
Thawani A, Stone HA, Shaevitz JW, Petry S. Spatiotemporal organization of branched microtubule networks. Elife. 2019 ;8.
Eickhoff MJ, Bassler BL. SnapShot: Bacterial Quorum Sensing. Cell. 2018 ;174(5):1328-1328.e1.
Tu KC, Waters CM, Svenningsen SL, Bassler BL. A small-RNA-mediated negative feedback loop controls quorum-sensing dynamics in Vibrio harveyi. Mol Microbiol. 2008 ;70(4):896-907.
Wetzel JL, Singh M. Sharing DNA-binding information across structurally similar proteins enables accurate specificity determination. Nucleic Acids Res. 2020 ;48(2):e9.
Bharucha N, Liu Y, Papanikou E, McMahon C, Esaki M, Jeffrey PD, et al. Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol Biol Cell. 2013 ;24(21):3406-19.
Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell. 2004 ;15(5):677-87.
Morgenstein RM, Bratton BP, Nguyen JP, Ouzounov N, Shaevitz JW, Gitai Z. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proc Natl Acad Sci U S A. 2015 ;112(40):12510-5.
Deng D, Yan C, Wu J, Pan X, Yan N. Revisiting the TALE repeat. Protein Cell. 2014 ;5(4):297-306.
Neiditch MB, Federle MJ, Miller ST, Bassler BL, Hughson FM. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol Cell. 2005 ;18(5):507-18.
Valencia AM, Collings CK, Dao HT, St Pierre R, Cheng Y-C, Huang J, et al. Recurrent SMARCB1 Mutations Reveal a Nucleosome Acidic Patch Interaction Site That Potentiates mSWI/SNF Complex Chromatin Remodeling. Cell. 2019 ;179(6):1342-1356.e23.