Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Author D Grimes, C Boswell, N Morante, R Henkelman, R Burdine, B Ciruna Publication Year 2016 Type Journal Article Abstract Idiopathic scoliosis (IS) affects 3% of children worldwide, yet the mechanisms underlying this spinal deformity remain unknown. Here we show that ptk7 mutant zebrafish, a faithful developmental model of IS, exhibit defects in ependymal cell cilia development and cerebrospinal fluid (CSF) flow. Transgenic reintroduction of Ptk7 in motile ciliated lineages prevents scoliosis in ptk7 mutants, and mutation of multiple independent cilia motility genes yields IS phenotypes. We define a finite developmental window for motile cilia in zebrafish spine morphogenesis. Notably, restoration of cilia motility after the onset of scoliosis blocks spinal curve progression. Together, our results indicate a critical role for cilia-driven CSF flow in spine development, implicate irregularities in CSF flow as an underlying biological cause of IS, and suggest that noninvasive therapeutic intervention may prevent severe scoliosis. Keywords Animals, Disease Models, Animal, Mutation, Animals, Genetically Modified, Zebrafish, Zebrafish Proteins, Cerebrospinal Fluid, Cilia, Ependyma, Hydrocephalus, Receptor Protein-Tyrosine Kinases, Scoliosis, Spine Journal Science Volume 352 Issue 6291 Pages 1341-4 Date Published 2016 Jun 10 ISSN Number 1095-9203 DOI 10.1126/science.aaf6419 Alternate Journal Science PMCID PMC5574193 PMID 27284198 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML