Thermodynamics and signatures of criticality in a network of neurons.

Publication Year
2015

Type

Journal Article
Abstract

The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance.

Journal
Proc Natl Acad Sci U S A
Volume
112
Issue
37
Pages
11508-13
Date Published
2015 Sep 15
ISSN Number
1091-6490
Alternate Journal
Proc Natl Acad Sci U S A
PMCID
PMC4577210
PMID
26330611