Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow.

TitleSymmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow.
Publication TypeJournal Article
Year of Publication2020
AuthorsBertin, V, Niven, J, Stone, HA, Salez, T, Raphaël, E, Dalnoki-Veress, K
JournalPhys Rev Lett
Volume124
Issue18
Pagination184502
Date Published2020 May 08
ISSN1079-7114
Abstract

We present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the vertical and lateral flows and which highlights the symmetry in the system. The symmetrization time is found to depend on the membrane thickness, surface tension, and viscosity.

DOI10.1103/PhysRevLett.124.184502
Alternate JournalPhys. Rev. Lett.
PubMed ID32441970