Structured foraging of soil predators unveils functional responses to bacterial defenses. Author Fernando Rossine, Gabriel Vercelli, Corina Tarnita, Thomas Gregor Publication Year 2022 Type Journal Article Abstract Predators and their foraging strategies often determine ecosystem structure and function. Yet, the role of protozoan predators in microbial soil ecosystems remains elusive despite the importance of these ecosystems to global biogeochemical cycles. In particular, amoebae-the most abundant soil protozoan predator of bacteria-remineralize soil nutrients and shape the bacterial community. However, their foraging strategies and their role as microbial ecosystem engineers remain unknown. Here, we present a multiscale approach, connecting microscopic single-cell analysis and macroscopic whole ecosystem dynamics, to expose a phylogenetically widespread foraging strategy, in which an amoeba population spontaneously partitions between cells with fast, polarized movement and cells with slow, unpolarized movement. Such differentiated motion gives rise to efficient colony expansion and consumption of the bacterial substrate. From these insights, we construct a theoretical model that predicts how disturbances to amoeba growth rate and movement disrupt their predation efficiency. These disturbances correspond to distinct classes of bacterial defenses, which allows us to experimentally validate our predictions. All considered, our characterization of amoeba foraging identifies amoeba mobility, and not amoeba growth, as the core determinant of predation efficiency and a key target for bacterial defense systems. Keywords Animals, Bacteria, Models, Theoretical, Ecosystem, Population Dynamics, Predatory Behavior, Soil Journal Proc Natl Acad Sci U S A Volume 119 Issue 52 Pages e2210995119 Date Published 2022 Dec 27 ISSN Number 1091-6490 DOI 10.1073/pnas.2210995119 Alternate Journal Proc Natl Acad Sci U S A PMCID PMC9907142 PMID 36538486 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML