The Source of Glycolytic Intermediates in Mammalian Tissues. Author Tara TeSlaa, Caroline Bartman, Connor Jankowski, Zhaoyue Zhang, Xincheng Xu, Xi Xing, Lin Wang, Wenyun Lu, Sheng Hui, Joshua Rabinowitz Publication Year 2021 Type Journal Article Abstract Glycolysis plays a central role in organismal metabolism, but its quantitative inputs across mammalian tissues remain unclear. Here we use C-tracing in mice to quantify glycolytic intermediate sources: circulating glucose, intra-tissue glycogen, and circulating gluconeogenic precursors. Circulating glucose is the main source of circulating lactate, the primary end product of tissue glycolysis. Yet circulating glucose highly labels glycolytic intermediates in only a few tissues: blood, spleen, diaphragm, and soleus muscle. Most glycolytic intermediates in the bulk of body tissue, including liver and quadriceps muscle, come instead from glycogen. Gluconeogenesis contributes less but also broadly to glycolytic intermediates, and its flux persists with physiologic feeding (but not hyperinsulinemic clamp). Instead of suppressing gluconeogenesis, feeding activates oxidation of circulating glucose and lactate to maintain glucose homeostasis. Thus, the bulk of the body slowly breaks down internally stored glycogen while select tissues rapidly catabolize circulating glucose to lactate for oxidation throughout the body. Keywords Animals, Mice, Carbon Isotopes, Mice, Inbred C57BL, Male, Glycolysis, Muscle, Skeletal, Gluconeogenesis, Blood Glucose, Spleen, Glycogen, Diaphragm Journal Cell Metab Volume 33 Issue 2 Pages 367-378.e5 Date Published 2021 Feb 02 ISSN Number 1932-7420 DOI 10.1016/j.cmet.2020.12.020 Alternate Journal Cell Metab PMCID PMC8088818 PMID 33472024 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML