Shape Transformations of Epithelial Shells. Author Mahim Misra, Basile Audoly, Ioannis Kevrekidis, Stanislav Shvartsman Publication Year 2016 Type Journal Article Abstract Regulated deformations of epithelial sheets are frequently foreshadowed by patterning of their mechanical properties. The connection between patterns of cell properties and the emerging tissue deformations is studied in multiple experimental systems, but the general principles remain poorly understood. For instance, it is in general unclear what determines the direction in which the patterned sheet is going to bend and whether the resulting shape transformation will be discontinuous or smooth. Here these questions are explored computationally, using vertex models of epithelial shells assembled from prismlike cells. In response to rings and patches of apical cell contractility, model epithelia smoothly deform into invaginated or evaginated shapes similar to those observed in embryos and tissue organoids. Most of the observed effects can be captured by a simpler model with polygonal cells, modified to include the effects of the apicobasal polarity and natural curvature of epithelia. Our models can be readily extended to include the effects of multiple constraints and used to describe a wide range of morphogenetic processes. Keywords Biomechanical Phenomena, Models, Biological, Cell Shape, Epithelial Cells Journal Biophys J Volume 110 Issue 7 Pages 1670-1678 Date Published 2016 Apr 12 ISSN Number 1542-0086 DOI 10.1016/j.bpj.2016.03.009 Alternate Journal Biophys J PMCID PMC4833838 PMID 27074691 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML