Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks.

Publication Year


Journal Article

The design of novel proteins that self-assemble into supramolecular complexes is important for development in nanobiotechnology and synthetic biology. Recently, we designed and created a protein nanobuilding block (PN-Block), WA20-foldon, by fusing an intermolecularly folded dimeric de novo WA20 protein and a trimeric foldon domain of T4 phage fibritin (Kobayashi et al., J. Am. Chem. Soc. 2015, 137, 11285). WA20-foldon formed several types of self-assembling nanoarchitectures in multiples of 6-mers, including a barrel-like hexamer and a tetrahedron-like dodecamer. In this study, to construct chain-like polymeric nanostructures, we designed de novo extender protein nanobuilding blocks (ePN-Blocks) by tandemly fusing two de novo binary-patterned WA20 proteins with various linkers. The ePN-Blocks with long helical linkers or flexible linkers were expressed in soluble fractions of Escherichia coli, and the purified ePN-Blocks were analyzed by native PAGE, size exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray scattering (SAXS), and transmission electron microscopy. These results suggest formation of various structural homo-oligomers. Subsequently, we reconstructed hetero-oligomeric complexes from extender and stopper PN-Blocks by denaturation and refolding. The present SEC-MALS and SAXS analyses show that extender and stopper PN-Block (esPN-Block) heterocomplexes formed different types of extended chain-like conformations depending on their linker types. Moreover, atomic force microscopy imaging in liquid suggests that the esPN-Block heterocomplexes with metal ions further self-assembled into supramolecular nanostructures on mica surfaces. Taken together, the present data demonstrate that the design and construction of self-assembling PN-Blocks using de novo proteins is a useful strategy for building polymeric nanoarchitectures of supramolecular protein complexes.

ACS Synth Biol
Date Published
2018 May 18
ISSN Number
Alternate Journal
ACS Synth Biol