Rotation of a submerged finite cylinder moving down a soft incline.

TitleRotation of a submerged finite cylinder moving down a soft incline.
Publication TypeJournal Article
Year of Publication2020
AuthorsSaintyves, B, Rallabandi, B, Jules, T, Ault, J, Salez, T, Schönecker, C, Stone, HA, Mahadevan, L
JournalSoft Matter
Volume16
Issue16
Pagination4000-4007
Date Published2020 Apr 29
ISSN1744-6848
Abstract

A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at a steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the cylinder and show theoretically that it is due to a combination of an elastohydrodynamic torque generated by flow in the variable gap, and the viscous friction on the edges of the finite-length cylinder. The relative influence of the latter depends on the aspect ratio of the cylinder, the angle of the incline, and the deformability of the substrate, which we express in terms of a single scaled compliance parameter. By independently varying these quantities, we show that our experimental results are consistent with a transition from an edge-effect dominated regime for short cylinders to a gap-dominated elastohydrodynamic regime when the cylinder is very long.

DOI10.1039/c9sm02344e
Alternate JournalSoft Matter
PubMed ID32266883