Recent advances in understanding hepatitis C. Author Florian Douam, Qiang Ding, Alexander Ploss Publication Year 2016 Type Journal Article Abstract The past decade has seen tremendous progress in understanding hepatitis C virus (HCV) biology and its related disease, hepatitis C. Major advances in characterizing viral replication have led to the development of direct-acting anti-viral therapies that have considerably improved patient treatment outcome and can even cure chronic infection. However, the high cost of these treatments, their low barrier to viral resistance, and their inability to prevent HCV-induced liver cancer, along with the absence of an effective HCV vaccine, all underscore the need for continued efforts to understand the biology of this virus. Moreover, beyond informing therapies, enhanced knowledge of HCV biology is itself extremely valuable for understanding the biology of related viruses, such as dengue virus, which is becoming a growing global health concern. Major advances have been realized over the last few years in HCV biology and pathogenesis, such as the discovery of the envelope glycoprotein E2 core structure, the generation of the first mouse model with inheritable susceptibility to HCV, and the characterization of virus-host interactions that regulate viral replication or innate immunity. Here, we review the recent findings that have significantly advanced our understanding of HCV and highlight the major challenges that remain. Journal F1000Res Volume 5 Date Published 2016 ISSN Number 2046-1402 DOI 10.12688/f1000research.7354.1 Alternate Journal F1000Res PMCID PMC4755394 PMID 26918166 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML