Primate protein-ligand interfaces exhibit significant conservation and unveil human-specific evolutionary drivers. Author Sean King, Mona Singh Publication Year 2023 Type Journal Article Abstract Despite the vast phenotypic differences observed across primates, their protein products are largely similar to each other at the sequence level. We hypothesized that, since proteins accomplish all their functions via interactions with other molecules, alterations in the sites that participate in these interactions may be of critical importance. To uncover the extent to which these sites evolve across primates, we built a structurally-derived dataset of ~4,200 one-to-one orthologous sequence groups across 18 primate species, consisting of ~68,000 ligand-binding sites that interact with DNA, RNA, small molecules, ions, or peptides. Using this dataset, we identify functionally important patterns of conservation and variation within the amino acid residues that facilitate protein-ligand interactions across the primate phylogeny. We uncover that interaction sites are significantly more conserved than other sites, and that sites binding DNA and RNA further exhibit the lowest levels of variation. We also show that the subset of ligand-binding sites that do vary are enriched in components of gene regulatory pathways and uncover several instances of human-specific ligand-binding site changes within transcription factors. Altogether, our results suggest that ligand-binding sites have experienced selective pressure in primates and propose that variation in these sites may have an outsized effect on phenotypic variation in primates through pleiotropic effects on gene regulation. Keywords Animals, Humans, Binding Sites, Ligands, DNA, RNA, Phylogeny, Evolution, Molecular, Primates Journal PLoS Comput Biol Volume 19 Issue 3 Pages e1010966 Date Published 2023 Mar ISSN Number 1553-7358 DOI 10.1371/journal.pcbi.1010966 Alternate Journal PLoS Comput Biol PMCID PMC10035887 PMID 36952575 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML