Physical limits to biomechanical sensing in disordered fibre networks. Author Farzan Beroz, Louise Jawerth, Stefan Münster, David Weitz, Chase Broedersz, Ned Wingreen Publication Year 2017 Type Journal Article Abstract Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here we investigate how this heterogeneity impacts mechanosensing by modelling the cell as an idealized local stiffness sensor inside a disordered fibre network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fibre networks. Finally, we show that to obtain optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and position to integrate multiple stiffness measurements over extended regions of space. Keywords Extracellular Matrix, Humans, Models, Biological, Mechanotransduction, Cellular, Elasticity, Collagen, Elastic Tissue, Fibrin Journal Nat Commun Volume 8 Pages 16096 Date Published 2017 Jul 18 ISSN Number 2041-1723 DOI 10.1038/ncomms16096 Alternate Journal Nat Commun PMCID PMC5520107 PMID 28719577 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML