Pharmacological disruption of the MTDH-SND1 complex enhances tumor antigen presentation and synergizes with anti-PD-1 therapy in metastatic breast cancer. Author Minhong Shen, Heath Smith, Yong Wei, Yi-Zhou Jiang, Sheng Zhao, Nicole Wang, Michelle Rowicki, Yong Tang, Xiang Hang, Songyang Wu, Liling Wan, Zhi-Ming Shao, Yibin Kang Publication Year 2022 Type Journal Article Abstract Despite increased overall survival rates, curative options for metastatic breast cancer remain limited. We have previously shown that metadherin (MTDH) is frequently overexpressed in poor prognosis breast cancer, where it promotes metastasis and therapy resistance through its interaction with staphylococcal nuclease domain-containing 1 (SND1). Through genetic and pharmacological targeting of the MTDH-SND1 interaction, we reveal a key role for this complex in suppressing antitumor T cell responses in breast cancer. The MTDH-SND1 complex reduces tumor antigen presentation and inhibits T cell infiltration and activation by binding to and destabilizing Tap1/2 messenger RNAs, which encode key components of the antigen-presentation machinery. Following small-molecule compound C26-A6 treatment to disrupt the MTDH-SND1 complex, we showed enhanced immune surveillance and sensitivity to anti-programmed cell death protein 1 therapy in preclinical models of metastatic breast cancer, in support of this combination therapy as a viable approach to increase immune-checkpoint blockade therapy responses in metastatic breast cancer. Keywords RNA-Binding Proteins, Nuclear Proteins, Humans, Transcription Factors, Membrane Proteins, Female, Breast Neoplasms, Endonucleases, Antigen Presentation, Micrococcal Nuclease Journal Nat Cancer Volume 3 Issue 1 Pages 60-74 Date Published 2022 Jan ISSN Number 2662-1347 DOI 10.1038/s43018-021-00280-y Alternate Journal Nat Cancer PMCID PMC8818088 PMID 35121988 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML