P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer.

TitleP-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer.
Publication TypeJournal Article
Year of Publication2018
AuthorsBarrio-Real, L, Lopez-Haber, C, Casado-Medrano, V, Goglia, AG, Toettcher, JE, Caloca, MJ, Kazanietz, MG
JournalOncotarget
Volume9
Issue47
Pagination28612-28624
Date Published2018 Jun 19
ISSN1949-2553
Abstract

Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (P-Rex1) is a key mediator of growth factor-induced activation of Rac1, a small GTP-binding protein widely implicated in actin cytoskeleton reorganization. This Guanine nucleotide Exchange Factor (GEF) is overexpressed in human luminal breast cancer, and its expression associates with disease progression, metastatic dissemination and poor outcome. Despite the established contribution of P-Rex1 to Rac activation and cell locomotion, whether this Rac-GEF has any relevant role in mitogenesis has been a subject of controversy. To tackle the discrepancies among various reports, we carried out an exhaustive analysis of the potential involvement of P-Rex1 on the activation of the mitogenic Erk pathway. Using a range of luminal breast cancer cellular models, we unequivocally showed that silencing P-Rex1 (transiently, stably, using multiple siRNA sequences) had no effect on the phospho-Erk response upon stimulation with growth factors (EGF, heregulin, IGF-I) or a GPCR ligand (SDF-1). The lack of involvement of P-Rex1 in Erk activation was confirmed at the single cell level using a fluorescent biosensor of Erk kinase activity. Depletion of P-Rex1 from breast cancer cells failed to affect cell cycle progression, cyclin D1 induction, Akt activation and apoptotic responses. In addition, mammary-specific P-Rex1 transgenic mice (MMTV-P-Rex1) did not show any obvious hyperproliferative phenotype. Therefore, despite its crucial role in Rac1 activation and cell motility, P-Rex1 is dispensable for mitogenic or survival responses in breast cancer cells.

DOI10.18632/oncotarget.25584
Alternate JournalOncotarget
PubMed ID29983884
PubMed Central IDPMC6033363
Grant ListDP2 EB024247 / EB / NIBIB NIH HHS / United States
F30 CA206408 / CA / NCI NIH HHS / United States
R01 CA129133 / CA / NCI NIH HHS / United States
R01 CA139120 / CA / NCI NIH HHS / United States