Optimal Decoding of Cellular Identities in a Genetic Network. Author Mariela Petkova, Gašper Tkačik, William Bialek, Eric Wieschaus, Thomas Gregor Publication Year 2019 Type Journal Article Abstract In developing organisms, spatially prescribed cell identities are thought to be determined by the expression levels of multiple genes. Quantitative tests of this idea, however, require a theoretical framework capable of exposing the rules and precision of cell specification over developmental time. We use the gap gene network in the early fly embryo as an example to show how expression levels of the four gap genes can be jointly decoded into an optimal specification of position with 1% accuracy. The decoder correctly predicts, with no free parameters, the dynamics of pair-rule expression patterns at different developmental time points and in various mutant backgrounds. Precise cellular identities are thus available at the earliest stages of development, contrasting the prevailing view of positional information being slowly refined across successive layers of the patterning network. Our results suggest that developmental enhancers closely approximate a mathematically optimal decoding strategy. Keywords Animals, Drosophila Proteins, Transcription Factors, Models, Genetic, Drosophila melanogaster, Embryonic Development, Gene Expression Regulation, Developmental, Embryo, Nonmammalian, Cell Differentiation, Body Patterning, GTPase-Activating Proteins, Gene Regulatory Networks Journal Cell Volume 176 Issue 4 Pages 844-855.e15 Date Published 2019 Feb 07 ISSN Number 1097-4172 DOI 10.1016/j.cell.2019.01.007 Alternate Journal Cell PMCID PMC6526179 PMID 30712870 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML