One-Carbon Metabolism in Health and Disease. Author Gregory Ducker, Joshua Rabinowitz Publication Year 2017 Type Journal Article Abstract One-carbon (1C) metabolism, mediated by the folate cofactor, supports multiple physiological processes. These include biosynthesis (purines and thymidine), amino acid homeostasis (glycine, serine, and methionine), epigenetic maintenance, and redox defense. Both within eukaryotic cells and across organs, 1C metabolic reactions are compartmentalized. Here we review the fundamentals of mammalian 1C metabolism, including the pathways active in different compartments, cell types, and biological states. Emphasis is given to recent discoveries enabled by modern genetics, analytical chemistry, and isotope tracing. An emerging theme is the biological importance of mitochondrial 1C reactions, both for producing 1C units that are exported to the cytosol and for making additional products, including glycine and NADPH. Increased clarity regarding differential folate pathway usage in cancer, stem cells, development, and adult physiology is reviewed and highlights new opportunities for selective therapeutic intervention. Keywords Animals, Humans, Mitochondria, Metabolic Networks and Pathways, Neoplasms, Carbon, Disease, Health Journal Cell Metab Volume 25 Issue 1 Pages 27-42 Date Published 2017 Jan 10 ISSN Number 1932-7420 DOI 10.1016/j.cmet.2016.08.009 Alternate Journal Cell Metab PMCID PMC5353360 PMID 27641100 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML