Modeling microbial metabolic trade-offs in a chemostat. Author Zhiyuan Li, Bo Liu, Sophia Li, Christopher King, Zemer Gitai, Ned Wingreen Publication Year 2020 Type Journal Article Abstract Microbes face intense competition in the natural world, and so need to wisely allocate their resources to multiple functions, in particular to metabolism. Understanding competition among metabolic strategies that are subject to trade-offs is therefore crucial for deeper insight into the competition, cooperation, and community assembly of microorganisms. In this work, we evaluate competing metabolic strategies within an ecological context by considering not only how the environment influences cell growth, but also how microbes shape their chemical environment. Utilizing chemostat-based resource-competition models, we exhibit a set of intuitive and general procedures for assessing metabolic strategies. Using this framework, we are able to relate and unify multiple metabolic models, and to demonstrate how the fitness landscape of strategies becomes intrinsically dynamic due to species-environment feedback. Such dynamic fitness landscapes produce rich behaviors, and prove to be crucial for ecological and evolutionarily stable coexistence in all the models we examined. Keywords Models, Biological, Bacteria, Bioreactors, Biochemical Phenomena Journal PLoS Comput Biol Volume 16 Issue 8 Pages e1008156 Date Published 2020 Aug ISSN Number 1553-7358 DOI 10.1371/journal.pcbi.1008156 Alternate Journal PLoS Comput Biol PMCID PMC7482850 PMID 32857772 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML