Of microbes and mange: consistent changes in the skin microbiome of three canid species infected with Sarcoptes scabiei mites. Author Alexandra DeCandia, Kennedy Leverett, Bridgett vonHoldt Publication Year 2019 Type Journal Article Abstract BACKGROUND: Sarcoptic mange is a highly contagious skin disease caused by the ectoparasitic mite Sarcoptes scabiei. Although it afflicts over 100 mammal species worldwide, sarcoptic mange remains a disease obscured by variability at the individual, population and species levels. Amid this variability, it is critical to identify consistent drivers of morbidity, particularly at the skin barrier.METHODS: Using culture-independent next generation sequencing, we characterized the skin microbiome of three species of North American canids: coyotes (Canis latrans), red foxes (Vulpes vulpes) and gray foxes (Urocyon cinereoargenteus). We compared alpha and beta diversity between mange-infected and uninfected canids using the Kruskal-Wallis test and multivariate analysis of variance with permutation. We used analysis of composition of microbes and gneiss balances to perform differential abundance testing between infection groups.RESULTS: We found remarkably consistent signatures of microbial dysbiosis associated with mange infection. Across genera, mange-infected canids exhibited reduced microbial diversity, altered community composition and increased abundance of opportunistic pathogens. The primary bacteria comprising secondary infections were Staphylococcus pseudintermedius, previously associated with canid ear and skin infections, and Corynebacterium spp., previously found among the gut flora of S. scabiei mites and hematophagous arthropods.CONCLUSIONS: This evidence suggests that sarcoptic mange infection consistently alters the canid skin microbiome and facilitates secondary bacterial infection, as seen in humans and other mammals infected with S. scabiei mites. These results provide valuable insights into the pathogenesis of mange at the skin barrier of North American canids and can inspire novel treatment strategies. By adopting a "One Health" framework that considers mites, microbes and the potential for interspecies transmission, we can better elucidate the patterns and processes underlying this ubiquitous and enigmatic disease. Keywords Animals, DNA, Female, Male, Analysis of Variance, Cluster Analysis, Microbiota, North America, Coyotes, Skin, Foxes, Biodiversity, RNA, Ribosomal, 16S, Corynebacterium, Dysbiosis, Morbidity, Multivariate Analysis, Sarcoptes scabiei, Scabies, Staphylococcus, Statistics, Nonparametric Journal Parasit Vectors Volume 12 Issue 1 Pages 488 Date Published 2019 Oct 16 ISSN Number 1756-3305 DOI 10.1186/s13071-019-3724-0 Alternate Journal Parasit Vectors PMCID PMC6796464 PMID 31619277 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML