Local and global consequences of flow on bacterial quorum sensing.

Publication Year
2016

Type

Journal Article
Abstract

Bacteria use a chemical communication process called quorum sensing (QS) to control collective behaviours such as pathogenesis and biofilm formation(1,2). QS relies on the production, release and group-wide detection of signal molecules called autoinducers. To date, studies of bacterial pathogenesis in well-mixed cultures have revealed virulence factors and the regulatory circuits controlling them, including the overarching role of QS(3). Although flow is ubiquitous to nearly all living systems(4), much less explored is how QS influences pathogenic traits in scenarios that mimic host environments, for example, under fluid flow and in complex geometries. Previous studies(5-7) have shown that sufficiently strong flow represses QS. Nonetheless, it is not known how QS functions under constant or intermittent flow, how it varies within biofilms or as a function of position along a confined flow, or how surface topography (grooves, crevices, pores) influence QS-mediated communication. We explore these questions using two common pathogens, Staphylococcus aureus and Vibrio cholerae. We identify conditions where flow represses QS and other conditions where QS is activated despite flow, including characterizing geometric and topographic features that influence the QS response. Our studies highlight that, under flow, genetically identical cells do not exhibit phenotypic uniformity with respect to QS in space and time, leading to complex patterns of pathogenesis and colonization. Understanding the ramifications of spatially and temporally non-uniform QS responses in realistic environments will be crucial for successful deployment of synthetic pro- and anti-QS strategies.

Journal
Nat Microbiol
Volume
1
Pages
15005
Date Published
2016 Jan 11
ISSN Number
2058-5276
Alternate Journal
Nat Microbiol
PMCID
PMC5010089
PMID
27571752