1.Betsinger C, Cristea I. Mitochondrial Function, Metabolic Regulation, and Human Disease Viewed through the Prism of Sirtuin 4 (SIRT4) Functions. J Proteome Res. 2019;18(5):1929–1938. PMCID: PMC6889813 Reference Link
1.Liu L, Su X, Quinn W, Hui S, Krukenberg K, Frederick D, Redpath P, Zhan L, Chellappa K, White E, Migaud M, Mitchison T, Baur J, Rabinowitz J. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab. 2018;27(5):1067–1080.e5. PMCID: PMC5932087 Reference Link
1.Rowland E, Greco T, Snowden C, McCabe A, Silhavy T, Cristea I. Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes. mBio. 2017;8(5). PMCID: PMC5596343 Reference Link
1.Budayeva H, Rowland E, Cristea I. Intricate Roles of Mammalian Sirtuins in Defense against Viral Pathogens. J Virol. 2016;90(1):5–8. PMCID: PMC4702534 Reference Link
1.Mathias R, Greco T, Cristea I. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators. Methods Mol Biol. 2016;1436:213–39. PMCID: PMC4919573 Reference Link
1.Avalos J, Bever K, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell. 2005;17(6):855–68. PMID: 15780941 Reference Link
1.Cosgrove M, Bever K, Avalos J, Muhammad S, Zhang X, Wolberger C. The structural basis of sirtuin substrate affinity. Biochemistry. 2006;45(24):7511–21. PMID: 16768447 Reference Link
1.Hoff K, Avalos J, Sens K, Wolberger C. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure. 2006;14(8):1231–40. PMID: 16905097 Reference Link