1.Pereira T, Tabris N, Matsliah A, Turner D, Li J, Ravindranath S, Papadoyannis E, Normand E, Deutsch D, Wang Y, McKenzie-Smith G, Mitelut C, Castro M, D’Uva J, Kislin M, Sanes D, Kocher S, Wang S, Falkner A, Shaevitz J, Murthy M. SLEAP: A deep learning system for multi-animal pose tracking. Nat Methods. 2022;19(4):486–495. PMCID: PMC9007740 Reference Link
1.Li V, Zhang Z, Troyanskaya O. CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes. Bioinformatics. 2021;37(Suppl_1):i342-i348. PMCID: PMC8275342 Reference Link
1.Cofer E, Raimundo J, Tadych A, Yamazaki Y, Wong A, Theesfeld C, Levine M, Troyanskaya O. Modeling transcriptional regulation of model species with deep learning. Genome Res. 2021;31(6):1097–1105. PMCID: PMC8168591 Reference Link
1.Park C, Zhou J, Wong A, Chen K, Theesfeld C, Darnell R, Troyanskaya O. Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk. Nat Genet. 2021;53(2):166–173. PMCID: PMC7886016 Reference Link
1.Zhou J, Park C, Theesfeld C, Wong A, Yuan Y, Scheckel C, Fak J, Funk J, Yao K, Tajima Y, Packer A, Darnell R, Troyanskaya O. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet. 2019;51(6):973–980. PMCID: PMC6758908 Reference Link
1.Chen K, Cofer E, Zhou J, Troyanskaya O. Selene: a PyTorch-based deep learning library for sequence data. Nat Methods. 2019;16(4):315–318. PMCID: PMC7148117 Reference Link
1.Pereira T, Aldarondo D, Willmore L, Kislin M, Wang S, Murthy M, Shaevitz J. Fast animal pose estimation using deep neural networks. Nat Methods. 2019;16(1):117–125. PMCID: PMC6899221 Reference Link
1.Zhou J, Theesfeld C, Yao K, Chen K, Wong A, Troyanskaya O. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet. 2018;50(8):1171–1179. PMCID: PMC6094955 Reference Link