1.Pisano T, Hoag A, Dhanerawala Z, Guariglia S, Jung C, Boele H-J, Seagraves K, Verpeut J, Wang S. Automated high-throughput mouse transsynaptic viral tracing using iDISCO+ tissue clearing, light-sheet microscopy, and BrainPipe. STAR Protoc. 2022;3(2):101289. PMCID: PMC9038781 Reference Link
1.Chen X, Du Y, Broussard G, Kislin M, Yuede C, Zhang S, Dietmann S, Gabel H, Zhao G, Wang S, Zhang X, Bonni A. Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature. 2022;605(7911):722–727. PMCID: PMC9887520 Reference Link
1.Pisano T, Dhanerawala Z, Kislin M, Bakshinskaya D, Engel E, Hansen E, Hoag A, Lee J, de Oude N, Venkataraju K, Verpeut J, Hoebeek F, Richardson B, Boele H-J, Wang S. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep. 2021;36(12):109721. PMCID: PMC8506234 Reference Link
1.Broussard G, Kislin M, Jung C, Wang S. A Flexible Platform for Monitoring Cerebellum-Dependent Sensory Associative Learning. J Vis Exp. 2022;(179). PMCID: PMC9118201 Reference Link
1.Zanin J, Verpeut J, Li Y, Shiflett M, Wang S, Santhakumar V, Friedman W. The p75NTR Influences Cerebellar Circuit Development and Adult Behavior via Regulation of Cell Cycle Duration of Granule Cell Progenitors. J Neurosci. 2019;39(46):9119–9129. PMCID: PMC6855675 Reference Link
1.Deverett B, Kislin M, Tank D, Wang S. Cerebellar disruption impairs working memory during evidence accumulation. Nat Commun. 2019;10(1):3128. PMCID: PMC6635393 Reference Link
1.Badura A, Verpeut J, Metzger J, Pereira T, Pisano T, Deverett B, Bakshinskaya D, Wang S. Normal cognitive and social development require posterior cerebellar activity. Elife. 2018;7. PMCID: PMC6195348 Reference Link
1.Deverett B, Koay S, Oostland M, Wang S. Cerebellar involvement in an evidence-accumulation decision-making task. Elife. 2018;7. PMCID: PMC6105309 Reference Link
1.Giovannucci A, Badura A, Deverett B, Najafi F, Pereira T, Gao Z, Ozden I, Kloth A, Pnevmatikakis E, Paninski L, De Zeeuw C, Medina J, Wang S. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat Neurosci. 2017;20(5):727–734. PMCID: PMC5704905 Reference Link
1.Piochon C, Kloth A, Grasselli G, Titley H, Nakayama H, Hashimoto K, Wan V, Simmons D, Eissa T, Nakatani J, Cherskov A, Miyazaki T, Watanabe M, Takumi T, Kano M, Wang S, Hansel C. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun. 2014;5:5586. PMCID: PMC4243533 Reference Link
1.Wang S, Kloth A, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83(3):518–32. PMCID: PMC4135479 Reference Link
1.Kloth A, Badura A, Li A, Cherskov A, Connolly S, Giovannucci A, Bangash A, Grasselli G, Peñagarikano O, Piochon C, Tsai P, Geschwind D, Hansel C, Sahin M, Takumi T, Worley P, Wang S. Cerebellar associative sensory learning defects in five mouse autism models. Elife. 2015;4:e06085. PMCID: PMC4512177 Reference Link