The human microbiome encodes resistance to the antidiabetic drug acarbose.

Publication Year
2021

Type

Journal Article
Abstract

The human microbiome encodes a large repertoire of biochemical enzymes and pathways, most of which remain uncharacterized. Here, using a metagenomics-based search strategy, we discovered that bacterial members of the human gut and oral microbiome encode enzymes that selectively phosphorylate a clinically used antidiabetic drug, acarbose, resulting in its inactivation. Acarbose is an inhibitor of both human and bacterial α-glucosidases, limiting the ability of the target organism to metabolize complex carbohydrates. Using biochemical assays, X-ray crystallography and metagenomic analyses, we show that microbiome-derived acarbose kinases are specific for acarbose, provide their harbouring organism with a protective advantage against the activity of acarbose, and are widespread in the microbiomes of western and non-western human populations. These results provide an example of widespread microbiome resistance to a non-antibiotic drug, and suggest that acarbose resistance has disseminated in the human microbiome as a defensive strategy against a potential endogenous producer of a closely related molecule.

Journal
Nature
Volume
600
Issue
7887
Pages
110-115
Date Published
2021 Dec
ISSN Number
1476-4687
Alternate Journal
Nature
PMCID
3552296
PMID
34819672