High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Author Yimo Han, Xiao Fan, Haozhe Wang, Fang Zhao, Christopher Tully, Jing Kong, Nan Yao, Nieng Yan Publication Year 2020 Type Journal Article Abstract Cryogenic electron microscopy (cryo-EM) has become one of the most powerful techniques to reveal the atomic structures and working mechanisms of biological macromolecules. New designs of the cryo-EM grids-aimed at preserving thin, uniform vitrified ice and improving protein adsorption-have been considered a promising approach to achieving higher resolution with the minimal amount of materials and data. Here, we describe a method for preparing graphene cryo-EM grids with up to 99% monolayer graphene coverage that allows for more than 70% grid squares for effective data acquisition with improved image quality and protein density. Using our graphene grids, we have achieved 2.6-Å resolution for streptavidin, with a molecular weight of 52 kDa, from 11,000 particles. Our graphene grids increase the density of examined soluble, membrane, and lipoproteins by at least 5-fold, affording the opportunity for structural investigation of challenging proteins which cannot be produced in large quantity. In addition, our method employs only simple tools that most structural biology laboratories can access. Moreover, this approach supports customized grid designs targeting specific proteins, owing to its broad compatibility with a variety of nanomaterials. Journal Proc Natl Acad Sci U S A Volume 117 Issue 2 Pages 1009-1014 Date Published 2020 Jan 14 ISSN Number 1091-6490 DOI 10.1073/pnas.1919114117 Alternate Journal Proc Natl Acad Sci U S A PMCID PMC6969529 PMID 31879346 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML