Heparin-fibronectin interactions in the development of extracellular matrix insolubility. Author Irene Raitman, Mia Huang, Selwyn Williams, Benjamin Friedman, Kamil Godula, Jean Schwarzbauer Publication Year 2018 Type Journal Article Abstract During extracellular matrix (ECM) assembly, fibronectin (FN) fibrils are irreversibly converted into a detergent-insoluble form which, through FN's multi-domain structure, can interact with collagens, matricellular proteins, and growth factors to build a definitive matrix. FN also has heparin/heparan sulfate (HS) binding sites. Using HS-deficient CHO cells, we show that the addition of soluble heparin significantly increased the amount of FN matrix that these cells assemble. Sulfated HS glycosaminoglycan (GAG) mimetics similarly increased FN assembly and demonstrated a dependence on GAG sulfation. The length of the heparin chains also plays a role in assembly. Chains of sufficient length to bind to two FN molecules gave maximal stimulation of assembly whereas shorter heparin had less of an effect. Using a decellularized fibroblast matrix for proteolysis, detergent fractionation, and mass spectrometry, we found that the predominant domain within insoluble fibril fragments is FN's major heparin-binding domain HepII (modules III). Multiple HepII domains bind simultaneously to a single heparin chain in size exclusion chromatography analyses. We propose a model in which heparin/HS binding to the HepII domain connects multiple FNs together to facilitate the formation of protein interactions for insoluble fibril assembly. Keywords Animals, Mice, Extracellular Matrix, Binding Sites, Protein Binding, NIH 3T3 Cells, Fibronectins, Proteolysis, CHO Cells, Cricetulus, Solubility, Heparin Journal Matrix Biol Volume 67 Pages 107-122 Date Published 2018 Apr ISSN Number 1569-1802 DOI 10.1016/j.matbio.2017.11.012 Alternate Journal Matrix Biol PMCID PMC5910196 PMID 29223498 PubMedPubMed CentralGoogle ScholarBibTeXEndNote X3 XML