Effect of Hydrodynamic Interactions on Reaction Rates in Membranes.

Publication Year
2017

Type

Journal Article
Abstract

The Brownian motion of two particles in three dimensions serves as a model for predicting the diffusion-limited reaction rate, as first discussed by von Smoluchowski. Deutch and Felderhof extended the calculation to account for hydrodynamic interactions between the particles and the target, which results in a reduction of the rate coefficient by about half. Many chemical reactions take place in quasi-two-dimensional systems, such as on the membrane or surface of a cell. We perform a Smoluchowski-like calculation in a quasi-two-dimensional geometry, i.e., a membrane surrounded by fluid, and account for hydrodynamic interactions between the particles. We show that rate coefficients are reduced relative to the case of no interactions. The reduction is more pronounced than the three-dimensional case due to the long-range nature of two-dimensional flows.

Journal
Biophys J
Volume
113
Issue
2
Pages
440-447
Date Published
2017 Jul 25
ISSN Number
1542-0086
Alternate Journal
Biophys J
PMCID
PMC5529315
PMID
28746854