Discovery of as a global regulator of secondary metabolism and virulence in E264.

TitleDiscovery of as a global regulator of secondary metabolism and virulence in E264.
Publication TypeJournal Article
Year of Publication2017
AuthorsMao, D, Bushin, LB, Moon, K, Wu, Y, Seyedsayamdost, MR
JournalProc Natl Acad Sci U S A
Date Published2017 04 04
KeywordsAnimals, Bacterial Proteins, Biofilms, Burkholderia, Burkholderia Infections, Caenorhabditis elegans, Gene Expression Regulation, Bacterial, Genes, Regulator, Lactones, Multigene Family, Secondary Metabolism, Virulence

<p>Bacteria produce a diverse array of secondary metabolites that have been invaluable in the clinic and in research. These metabolites are synthesized by dedicated biosynthetic gene clusters (BGCs), which assemble architecturally complex molecules from simple building blocks. The majority of BGCs in a given bacterium are not expressed under normal laboratory growth conditions, and our understanding of how they are silenced is in its infancy. Here, we have addressed this question in the Gram-negative model bacterium E264 using genetic, transcriptomic, metabolomic, and chemical approaches. We report that a previously unknown, quorum-sensing-controlled LysR-type transcriptional regulator, which we name ScmR (for secondary metabolite regulator), serves as a global gatekeeper of secondary metabolism and a repressor of numerous BGCs. Transcriptionally, we find that 13 of the 20 BGCs in are significantly (threefold or more) up- or down-regulated in a deletion mutant ( Metabolically, the strain displays a hyperactive phenotype relative to wild type and overproduces a number of compound families by 18- to 210-fold, including the silent virulence factor malleilactone. Accordingly, the mutant is hypervirulent both in vitro and in a model in vivo. Aside from secondary metabolism, ScmR also represses biofilm formation and transcriptionally activates ATP synthesis and stress response. Collectively, our data suggest that ScmR is a pleiotropic regulator of secondary metabolism, virulence, biofilm formation, and other stationary phase processes. A model for how the interplay of ScmR with pathway-specific transcriptional regulators coordinately silences virulence factor production is proposed.</p>

Alternate JournalProc Natl Acad Sci U S A
PubMed ID28320949
PubMed Central IDPMC5389298