Biosynthesis-guided discovery reveals enteropeptins as alternative sactipeptides containing N-methylornithine.

TitleBiosynthesis-guided discovery reveals enteropeptins as alternative sactipeptides containing N-methylornithine.
Publication TypeJournal Article
Year of Publication2022
AuthorsClark, KA, Covington, BC, Seyedsayamdost, MR
JournalNat Chem
Date Published2022 Oct 31
ISSN1755-4349
Abstract

<p>The combination of next-generation DNA sequencing technologies and bioinformatics has revitalized natural product discovery. Using a bioinformatic search strategy, we recently identified ∼600 gene clusters in otherwise overlooked streptococci that code for ribosomal peptide natural products synthesized by radical S-adenosylmethionine enzymes. These grouped into 16 subfamilies and pointed to an unexplored microbiome biosynthetic landscape. Here we report the structure, biosynthesis and function of one of these natural product groups, which we term enteropeptins, from the gut microbe Enterococcus cecorum. We show three reactions in the biosynthesis of enteropeptins that are each catalysed by a different family of metalloenzymes. Among these, we characterize the founding member of a widespread superfamily of Fe-S-containing methyltransferases, which, together with an Mn-dependent arginase, installs N-methylornithine in the peptide sequence. Biological assays with the mature product revealed bacteriostatic activity only against the producing strain, extending an emerging theme of fratricidal or self-inhibitory metabolites in microbiome firmicutes.</p>

DOI10.1038/s41557-022-01063-3
Alternate JournalNat Chem
PubMed ID36316408
PubMed Central ID3564958
Grant ListNSF CAREER Award 1847932 / / National Science Foundation (NSF) /