Mohamed S. Donia

Position
Associate Professor of Molecular Biology
Office Phone
Assistant
Office
Guyot Hall, A5
Bio/Description

Focus

Small-molecule-mediated interactions in complex microbial communities

Research

Much like human beings, microbes often live in diverse communities interacting with both collaborators and competitors. Small molecule natural products mediate a significant portion of these interactions. As expected, the more complex a microbial community is, the richer its small molecule chemical arsenal becomes. This phenomenon has been observed in the complex microbiomes of marine invertebrates, terrestrial soils, human gut, and the plant rhizosphere, among others. Our research interests are mainly to study the chemical and biological interactions within complex microbial communities (microbe-microbe interactions) and between microbial communities and their multicellular hosts (microbe-host interactions). In respect to the human body and its microbial inhabitants (the human microbiome), these interactions can define the difference between commensals and pathogens, and thus between health and disease states. In the case of marine invertebrates (e.g., sponges and ascidians) and their symbionts, these interactions can provide the host with indispensible means of chemical defense, allowing it to survive in a predator-rich environment. In the soil or seawater, these interactions can dictate the microbial community’s composition, fitness and stability over time.  Our ongoing efforts towards understanding these interactions will not only explain fundamentals of basic biology in these systems, but will also supply a suite of biologically active small molecules that can be developed as therapeutic agents.

In addition, the Donia lab has a special interest in the uncultivable microbial components of complex communities, which have eluded research attempts for decades despite their abundance and clear importance. Recent advances in the fields of metagenomics and single-cell genomics have allowed access to the genetic information of some of these unculturable microbes, while functional studies remain challenging. Our goal is to develop the necessary computational and experimental tools to functionally study the interactions mediated by uncultivable members of complex microbiomes, using an integrated multi “omics” approach, including metagenomics, metabolomics and metatranscriptomics. The Donia lab functions at the intersection between multiple disciplines: microbiology, molecular biology, biochemistry, small molecule chemistry and biosynthesis, metagenomics and bioinformatics, aiming to answer basic biological questions and to develop new therapeutics.

Biography

Dr. Donia received his B.Sc in Pharmacy from the Faculty of Pharmacy, Suez Canal University, Egypt in 2004. He moved to the US in 2005 to study for his Ph.D. at the Medicinal Chemistry Department, School of Pharmacy, University of Utah. He worked in Dr. Eric Schmidt's laboratory where he studied the chemistry and biology of small molecules produced by bacterial symbionts of marine animals. He used chemical, microbiological, and metagenomic techniques to study the role of small molecules in mediating microbe-host and microbe-microbe interactions in marine invertebrates. In 2010, he joined Dr. Michael Fischbach's laboratory at the Department of Bioengineering and Therapeutic Sciences at the University of California, San Francisco. There, he studied small molecules produced by members of the human microbiome and their role in mediating microbe-host and microbe-microbe interactions in humans. In particular, he focused on antibiotics produced by human pathogens and commensals, and their role in shaping the composition and dynamics of the human vaginal and oral microbiota.

Honors & Awards

2016

  • Breakthrough Award, Kenneth Rainin Foundation

2015

  • Innovation Award, Department of Molecular Biology, Princeton University
  • New Innovator Award, National Institutes of Health

Education

  • B.Sc., Pharmacy, College of Pharmacy, Suez Canal University, Egypt
  • Ph.D., Medicinal Chemistry, College of Pharmacy, University of Utah

Selected Publications