Jared E. Toettcher Position Associate Professor of Molecular Biology and Bioengineering Role Deputy Director, Omenn-Darling Bioengineering Institute Website Toettcher Lab CV Jared Toettcher CV Office Phone 609-258-8466 Email [email protected] Assistant Ellen Brindle-Clark Office Thomas Laboratory, 140 Bio/Description FocusUnderstanding and controlling complex cell behaviorsResearchCells live in an information‐rich world, where nutrients, neighboring cells and environmental stresses must each be sensed, processed and responded to appropriately. These cell decisions also matter: we are entering an era where understanding and controlling them could improve therapies based on re‐engineering cell behavior, such as cell fate control for organ regeneration, and help treat diseases that deregulate information flow, like unchecked growth and proliferation in cancer. But although we know the identity of many of the signaling molecules involved in cellular decision making, our understanding of how these molecules work together, especially when integrating many diverse inputs, is still quite primitive. How does the emergent ability to encode and store information arise from protein‐protein interactions? What kind of signals – patterns of protein activity in space and time – are read out by the cell to initiate specific outcomes?In asking these questions, we are particularly fascinated by a model system – the control of cell proliferation and differentiation downstream of receptor tyrosine kinases (RTKs). RTKs are a large family of cell surface receptors, and different members of the family can control fates as diverse as cell growth, division, survival during stress, or differentiation to terminal states. Surprisingly, RTKs can direct their wide range of responses even though different receptors in the family talk to a highly overlapping set of intracellular signaling pathways. To better understand and control how specific outcomes are encoded, we apply a variety of techniques from cell biology, engineering and synthetic biology.Harnessing optogenetics to precisely control inputs to cell signalingFluorescent reporters have revolutionized our understanding of cellular decision-making by making it possible to observe the levels, activity states, and location of proteins inside living cells. However, in contrast to our ability to precisely measure these cellular outputs, our control over the inputs that can be delivered to cell signaling pathways is still quite limited. One focus of my laboratory is the development and use of optogenetic inputs to cell signaling, particularly the light-gated association of two plant proteins, Phytochrome B and PIF6, which can be ported into a wide variety of cell types and organisms. Unlike small molecules or proteins, which diffuse and may interact with many binding partners, the spatial location and intensity of light can be controlled with extremely high precision. However, these tools are still in their early years. To achieve their full capability, my laboratory will continue engineer light-gated control over new cell signaling processes, and expand the palette of optogenetic tools that can be used in cells.What pathway combinations and dynamics specify cell fate?One major function of receptor tyrosine kinase signaling, particularly through fibroblast growth factor receptors (FGFRs), is to control differentiation of pluripotent cells. Using engineered control over two key signaling proteins downstream of receptor tyrosine kinases – the small G protein Ras and the lipid kinase PI3K – we are investigating how the level, duration and spatial organization of signaling activity controls cell differentiation. We picture this process in analogy to a “phase diagram” in physics, where control parameters (temperature and pressure) specify a material’s phase (solid, liquid or gas). By systematically varying pathway activity levels, dynamics and molecular organization, we aim to determine what these control parameters are, and whether the boundaries between different cell fates are as sharp as those between material properties.How do signaling input-output relationships vary across different cellular contexts?By combining dynamic inputs and live‐cell reporters, it is possible to directly measure input/output relationships at the single‐cell level with quantitative precision. For instance, we have determined that in fibroblasts, signals delivered to Ras take about 3 minutes to traverse the MAP kinase signaling cascade and activate Erk, and this transmission is equally efficient across a broad range of input levels and timescales. We are interested in extending these approaches to ask whether these commonly reused pathways change input-output relationships in different cellular contexts. Does a T cell, tasked with quickly sampling antigen-presenting cells to identify pathogenic peptides, alter its MAP kinase input-output relationship? What about cancer cells, in which key pathway components are often mutated?Cancer is in part a disease of signal transmission: pathways that are important to normal cell behavior are “rewired” to generate improper responses. But although advances in genome sequencing have identified a huge number of mutations that can contribute to tumorigenesis, we have very little idea of how these mutations work together to functionally alter cell signaling. A major focus of my lab will be to ask how signal transmission measurements can be used to profile the signaling changes between normal and cancer cells, and infer how network architecture is rewired as a function of mutation.BiographyJared Toettcher is an Assistant Professor of Molecular Biology at Princeton University. Originally from California, he graduated with a B.S. in Bioengineering from UC Berkeley in 2004. He completed his graduate studies at MIT in Biological Engineering in 2009, working with Bruce Tidor (MIT) and Galit Lahav (Harvard Medical School) on the relationship between mammalian cells’ surveillance of DNA damage and decision to undergo cell cycle arrest. Dr. Toettcher then completed a Cancer Research Institute postdoctoral fellowship under Wendell Lim and Orion Weiner at UC San Francisco, where he developed new tools to control mammalian cell behavior by engineering optogenetic inputs to the signaling pathways controlled by Ras and PI 3-kinase.Dr. Toettcher’s research focuses on dissecting how signaling pathways work together to orchestrate complex cell decision-making. Currently, his work focuses on how Ras and PI3K activity are coordinated in cell fate control, and how signal processing is disregulated in cancer cells harboring mutations in these pathways. Dr. Toettcher’s honors and awards include a Cancer Research Institute fellowship, NIH Ruth Kirschstein postdoctoral fellowship, an MIT Presidential Fellowship and a UC Berkeley Regents’ Scholarship.Honors & Awards2016Innovation Award, Department of Molecular Biology, Princeton UniversityDirector's New Innovator Award, National Institutes of Health Education B.S., Bioengineering, University of California, BerkeleyPh.D., Biological Engineering, Massachusetts Institute of Technology Selected Publications 1.Singh A, Wu P, Ryabichko S, Raimundo J, Swan M, Wieschaus E, Gregor T, Toettcher J. Optogenetic control of the Bicoid morphogen reveals fast and slow modes of gap gene regulation. Cell Rep. 2022;38(12):110543. PMCID: PMC9019726 1.McFann S, Shvartsman S, Toettcher J. Putting in the Erk: Growth factor signaling and mesoderm morphogenesis. Curr Top Dev Biol. 2022;149:263–310. PMID: 35606058 1.Zhao E, Lalwani M, Chen J-M, Orillac P, Toettcher J, Avalos J. Optogenetic Amplification Circuits for Light-Induced Metabolic Control. ACS Synth Biol. 2021;10(5):1143–1154. PMCID: PMC8721662 1.Murugan A, Husain K, Rust M, Hepler C, Bass J, Pietsch J, Swain P, Jena S, Toettcher J, Chakraborty A, Sprenger K, Mora T, Walczak A, Rivoire O, Wang S, Wood K, Skanata A, Kussell E, Ranganathan R, Shih H-Y, Goldenfeld N. Roadmap on biology in time varying environments. Phys Biol. 2021;18(4). PMCID: PMC8652373 1.Dine E, Reed E, Toettcher J. Positive feedback between the T cell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch. Cell Rep. 2021;35(12):109280. PMCID: PMC8292983 1.McFann S, Dutta S, Toettcher J, Shvartsman S. Temporal integration of inductive cues on the way to gastrulation. Proc Natl Acad Sci U S A. 2021;118(23). PMCID: PMC8201965 1.Farahani P, Reed E, Underhill E, Aoki K, Toettcher J. Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems. Annu Rev Biomed Eng. 2021;23:61–87. PMID: 33722063 1.Lovelett R, Zhao E, Lalwani M, Toettcher J, Kevrekidis I, Avalos J. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications. ACS Synth Biol. 2021;10(2):219–227. PMID: 33492138 1.Farahani P, Lemke S, Dine E, Uribe G, Toettcher J, Nelson C. Substratum stiffness regulates Erk signaling dynamics through receptor-level control. Cell Rep. 2021;37(13):110181. PMCID: PMC8756379 1.Verma A, Jena S, Isakov D, Aoki K, Toettcher J, Engelhardt B. A self-exciting point process to study multicellular spatial signaling patterns. Proc Natl Acad Sci U S A. 2021;118(32). PMCID: PMC8364135 View all publications 1.Johnson H, Djabrayan N, Shvartsman S, Toettcher J. Optogenetic Rescue of a Patterning Mutant. Curr Biol. 2020;30(17):3414–3424.e3. PMCID: PMC7730203 1.Goglia A, Wilson M, Jena S, Silbert J, Basta L, Devenport D, Toettcher J. A Live-Cell Screen for Altered Erk Dynamics Reveals Principles of Proliferative Control. Cell Syst. 2020;10(3):240–253.e6. PMCID: PMC7540725 1.Zhao E, Lalwani M, Lovelett R, García-Echauri S, Hoffman S, Gonzalez C, Toettcher J, Kevrekidis I, Avalos J. Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering. ACS Synth Biol. 2020;9(12):3254–3266. PMID: 33232598 1.Gil A, Carrasco-López C, Zhu L, Zhao E, Ravindran P, Wilson M, Goglia A, Avalos J, Toettcher J. Optogenetic control of protein binding using light-switchable nanobodies. Nat Commun. 2020;11(1):4044. PMCID: PMC7426870 1.Carrasco-López C, Zhao E, Gil A, Alam N, Toettcher J, Avalos J. Development of light-responsive protein binding in the monobody non-immunoglobulin scaffold. Nat Commun. 2020;11(1):4045. PMCID: PMC7427095 1.Ravindran P, Wilson M, Jena S, Toettcher J. Engineering combinatorial and dynamic decoders using synthetic immediate-early genes. Commun Biol. 2020;3(1):436. PMCID: PMC7426417 1.Zhao E, Suek N, Wilson M, Dine E, Pannucci N, Gitai Z, Avalos J, Toettcher J. Light-based control of metabolic flux through assembly of synthetic organelles. Nat Chem Biol. 2019;15(6):589–597. PMCID: PMC6755918 1.Johnson H, Toettcher J. Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo. Dev Cell. 2019;48(3):361–370.e3. PMCID: PMC6394837 1.Goglia A, Toettcher J. A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr Opin Chem Biol. 2019;48:106–113. PMCID: PMC6382565 1.Golonka D, Fischbach P, Jena S, Kleeberg J, Essen L-O, Toettcher J, Zurbriggen M, Möglich A. Publisher Correction: Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors. Commun Biol. 2019;2(1):475. PMID: 33323941 1.Patel A, Yeung E, McGuire S, Wu A, Toettcher J, Burdine R, Shvartsman S. Optimizing photoswitchable MEK. Proc Natl Acad Sci U S A. 2019;116(51):25756–25763. PMCID: PMC6926043 1.Golonka D, Fischbach P, Jena S, Kleeberg J, Essen L-O, Toettcher J, Zurbriggen M, Möglich A. Erratum: Publisher Correction: Deconstructing and repurposing the light-regulated interplay between phytochromes and interacting factors. Commun Biol. 2019;2:475. PMCID: PMC6917782 1.Golonka D, Fischbach P, Jena S, Kleeberg J, Essen L-O, Toettcher J, Zurbriggen M, Möglich A. Deconstructing and repurposing the light-regulated interplay between phytochromes and interacting factors. Commun Biol. 2019;2:448. PMCID: PMC6888877 1.Bracha D, Walls M, Wei M-T, Zhu L, Kurian M, Avalos J, Toettcher J, Brangwynne C. Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds. Cell. 2018;175(6):1467–1480.e13. PMCID: PMC6724719 1.Dine E, Toettcher J. Optogenetic Reconstitution for Determining the Form and Function of Membraneless Organelles. Biochemistry. 2018;57(17):2432–2436. PMCID: PMC5972035 1.Zhao E, Zhang Y, Mehl J, Park H, Lalwani M, Toettcher J, Avalos J. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature. 2018;555(7698):683–687. PMCID: PMC5876151 1.Dine E, Gil A, Uribe G, Brangwynne C, Toettcher J. Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli. Cell Syst. 2018;6(6):655–663.e5. PMCID: PMC6023754 1.Winer B, Shirvani-Dastgerdi E, Bram Y, Sellau J, Low B, Johnson H, Huang T, Hrebikova G, Heller B, Sharon Y, Giersch K, Gerges S, Seneca K, Pais M-A, Frankel A, Chiriboga L, Cullen J, Nahass R, Lutgehetmann M, Toettcher J, Wiles M, Schwartz R, Ploss A. Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med. 2018;10(447). PMCID: PMC6337727 1.Barrio-Real L, Lopez-Haber C, Casado-Medrano V, Goglia A, Toettcher J, Caloca M, Kazanietz M. P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer. Oncotarget. 2018;9(47):28612–28624. PMCID: PMC6033363 1.Tanner L, Goglia A, Wei M, Sehgal T, Parsons L, Park J, White E, Toettcher J, Rabinowitz J. Four Key Steps Control Glycolytic Flux in Mammalian Cells. Cell Syst. 2018;7(1):49–62.e8. PMCID: PMC6062487 1.Johnson H, Toettcher J. Illuminating developmental biology with cellular optogenetics. Curr Opin Biotechnol. 2018;52:42–48. PMCID: PMC6082700 1.Allard C, Decker F, Weiner O, Toettcher J, Graziano B. A size-invariant bud-duration timer enables robustness in yeast cell size control. PLoS One. 2018;13(12):e0209301. PMCID: PMC6303054 1.Wilson M, Ravindran P, Lim W, Toettcher J. Tracing Information Flow from Erk to Target Gene Induction Reveals Mechanisms of Dynamic and Combinatorial Control. Mol Cell. 2017;67(5):757–769.e5. PMCID: PMC5591080 1.Johnson H, Goyal Y, Pannucci N, Schüpbach T, Shvartsman S, Toettcher J. The Spatiotemporal Limits of Developmental Erk Signaling. Dev Cell. 2017;40(2):185–192. PMCID: PMC5289754 1.Shin Y, Berry J, Pannucci N, Haataja M, Toettcher J, Brangwynne C. Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell. 2017;168(1-2):159–171.e14. PMCID: PMC5562165 1.Goglia A, Wilson M, DiGiorno D, Toettcher J. Optogenetic Control of Ras/Erk Signaling Using the Phy-PIF System. Methods Mol Biol. 2017;1636:3–20. PMID: 28730469 1.Diner B, Lum K, Toettcher J, Cristea I. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection. mBio. 2016;7(6). PMCID: PMC5111403 1.Johnson H, Toettcher J. The Duty of an Intracellular Signal: Illuminating Calcium’s Role in Transcriptional Control. Cell Syst. 2016;2(4):223–4. PMID: 27135534 1.Toettcher J, Weiner O, Lim W. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell. 2013;155(6):1422–34. PMCID: PMC3925772 1.Toettcher J, Gong D, Lim W, Weiner O. Light-based feedback for controlling intracellular signaling dynamics. Nat Methods. 2011;8(10):837–9. PMCID: PMC3184382 1.Toettcher J, Voigt C, Weiner O, Lim W. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat Methods. 2011;8(1):35–8. PMCID: PMC3024327 1.Toettcher J, Gong D, Lim W, Weiner O. Light control of plasma membrane recruitment using the Phy-PIF system. Methods Enzymol. 2011;497:409–23. PMCID: PMC3121701 1.Toettcher J, Castillo A, Tidor B, White J. Oscillator sensitivity analysis in the presence of hidden conservation constraints. In Proceedings of the 48th IEEE Design Automation Conference. 2011. 1.Toettcher J, Apgar J, Castillo A, Tidor B, White J. Recycling circuit simulation techniques for mass-action biochemical kinetics. In Advanced Simulation and Verification of Electronic and Biological Systems. 2011. p. 115–136. Related News Cristea and Toettcher named 2024 Allen Distinguished Investigators JAK in the box Research Area Cell Biology, Development & Cancer