@article{4624, keywords = {Animals, Mice, Membrane Proteins, Light, Proteomics, Staining and Labeling, Biotin}, author = {Benito Buksh and Steve Knutson and James Oakley and Noah Bissonnette and Daniel Oblinsky and Michael Schwoerer and Ciaran Seath and Jacob Geri and Frances Rodriguez-Rivera and Dann Parker and Gregory Scholes and Alexander Ploss and David MacMillan}, title = {μMap-Red: Proximity Labeling by Red Light Photocatalysis.}, abstract = {
Modern proximity labeling techniques have enabled significant advances in understanding biomolecular interactions. However, current tools primarily utilize activation modes that are incompatible with complex biological environments, limiting our ability to interrogate cell- and tissue-level microenvironments in animal models. Here, we report μMap-Red, a proximity labeling platform that uses a red-light-excited Sn chlorin e6 catalyst to activate a phenyl azide biotin probe. We validate μMap-Red by demonstrating photonically controlled protein labeling through several layers of tissue, and we then apply our platform to label microenvironments and validate performance with STED microscopy and quantitative proteomics. Finally, to demonstrate labeling in a complex biological sample, we deploy μMap-Red in whole mouse blood to profile erythrocyte cell-surface proteins. This work represents a significant methodological advance toward light-based proximity labeling in complex tissue environments and animal models.
}, year = {2022}, journal = {J Am Chem Soc}, volume = {144}, pages = {6154-6162}, month = {2022 Apr 13}, issn = {1520-5126}, doi = {10.1021/jacs.2c01384}, language = {eng}, }