@article{3834, author = {Vincent Bertin and John Niven and Howard Stone and Thomas Salez and Elie Rapha{\"e}l and Kari Dalnoki-Veress}, title = {Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow.}, abstract = {
We present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the vertical and lateral flows and which highlights the symmetry in the system. The symmetrization time is found to depend on the membrane thickness, surface tension, and viscosity.
}, year = {2020}, journal = {Phys Rev Lett}, volume = {124}, pages = {184502}, month = {2020 May 08}, issn = {1079-7114}, doi = {10.1103/PhysRevLett.124.184502}, language = {eng}, }