@article{2438, keywords = {Animals, Action Potentials, Attention, Retina, Motion Perception, Retinal Ganglion Cells, Ambystoma, Motion}, author = {Eric Chen and Olivier Marre and Clark Fisher and Greg Schwartz and Joshua Levy and Rava da Silveira and Michael Berry}, title = {Alert response to motion onset in the retina.}, abstract = {
Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system.
}, year = {2013}, journal = {J Neurosci}, volume = {33}, pages = {120-32}, month = {2013 Jan 02}, issn = {1529-2401}, doi = {10.1523/JNEUROSCI.3749-12.2013}, language = {eng}, }